Ceylan-Curry, a Haskell Cookbook

Organisation: Copyright (C) 2021-2022 Olivier Boudeville
Contact: about (dash) curry (at) esperide (dot) com
Creation date: Tuesday, September 7, 2021

Lastly updated: Wednesday, September 7, 2022
Version: 0.0.1

Status: Work in progress

Dedication: Anyone wanting to discover the Haskell programming
language.
Abstract: The purpose of this Curry cookbook is to help newcom-
ers getting up to speed with functional programming as done
based on the Haskell language.
The latest version of this documentation is to be found at the official Curry
website (http://curry.esperide.org).

http://curry.esperide.org/
https://www.haskell.org/
http://curry.esperide.org
http://curry.esperide.org

Table of Contents

Overview

The purpose of this Curry cookbook is to help newcomers getting up to speed
with functional programming when relying on the Haskell language® for that.

More precisely, this cookbook is to summarise the various elements that we
found useful to remember when wanting to program in Haskell. We hope that
it may be useful whereas either one never really practiced that art or already
forgot essential elements of it.

So the goal of Curry is to be quicker to read/browse than it would be to
start the learning again from scratch, and never reaching the latter parts thereof
(knowing that the learning curve of Haskell is unfortunately rather steep).

Note

As this cookbook is being written as we are in the process of learning
Haskell, errors, misconceptions and epic blunders are bound to occur
in this text; if you detect such issues, please contact us so that we can
correct this document accordingly. Thanks in advance!

Cookbook Conventions

The = character denotes here equivalence of expressions; ex: 2 * x = x +
X.

For clarity, the formal characters like , and — are replaced by the one that
you would type (namely \, >> and ->).

Concepts

Functional Programming (FP)

A programming style based on the application of functions (more information).

Arity

The (maximal) number of arguments expected by a function.

Expressions

e conditional ones: if/then/else (ex: if n >= 0 then n else -n)

e guarded: | can be read as "when (some condition is true)"; knowing that
otherwise = True allows to define default clauses

e lambda expressions are just anonymous functions; ex: \x -> 4 + 2*x

1This cookbook is in some way a Haskell counterpart of what we did for Erlang, with the
software stack whose first layer is Ceylan-Myriad.

http://curry.esperide.org/
https://www.haskell.org/
https://en.wikipedia.org/wiki/Functional_programming
https://myriad.esperide.org

Operators
Operator Precedence

Precedence allows to define the order of the operations.

If the precedence of op1 is higher than the one of op2, then x opl y op2 z
shall be read as: (x opl y) op2 z.

See the precedence table for all Haskell operators.

By using the :info GHCi command, the precedence levels of operators can
be returned:

Prelude> :info +

type Num :: * -> Constraint
class Num a where

(+) ::a->a ->a

-- Defined in ‘GHC.Num’
infixl 6 +
Operator Associativity

This determines how operators of the same precedence are grouped in the ab-
sence of parentheses.
Operators may be:

e associative, meaning the operations can be grouped arbitrarily

e left-associative, meaning the operations are grouped from the left: 2-3+4
= (2-3)+4

e right-associative, meaning the operations are grouped from the right:
27374 = 27(374)

e non-associative, meaning operations cannot be chained, often because
the output type is incompatible with the input types
Operator Calls

Operators are just functions that can be called:
e cither directly: opl x or op2 x y; for example: (-x) or (+) x 4

e or, for the ones of arity 2, as infix operators: x ‘op2¢ y = op2 x y

Some Operators of Interest

Calling functions: the " " (pseudo-)operator Being central in FP, func-
tion application is symbolised just by a space.

It behaves as the operator of the highest precedence; therefore f a + b =
(f a) +b

(rather than £ (a + b))2.

2Another example: an expression that could be described informally as f(a,b) + c.d
translates in Haskell as £ a b + cxd or ((f a) b) + cxd".

https://en.wikipedia.org/wiki/Order_of_operations
https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-820004.4.2
https://en.wikipedia.org/wiki/Operator_associativity
https://en.wikipedia.org/wiki/Operator_associativity

This pseudo-operator is left-associative: £ g h = ((f g) h).

f g x corresponds to the application of a function g and of a variable x at
f (i.e. £(g,x)); if wanting to express f(g(x)), rely on £ (g x) or, even better,
onf.g x.

Consing lists: the ":" operator This operator, named cons (for construct),
allows to define lists by appending successively elements, starting from the
empty list ([]; designated as nil).

The : operator is right-associative:

x:y:z:l = x:(y:(z:1))
Example:

[4,5,3] = 4:5:3:[]

Function Arrow: the "->" operator It allows to specify the datatypes
involved in the type definition of a function.
This operator is right-associative:

A->B->C-> = A -> (B ->(->D)
Example:

-- mult :: Int -> (Int -> (Int -> Int))
mult :: Int -> Int -> Int -> Int

--mult x y z = ((mult x) y) z
mult x y z = x*y*z

Composition: the "." operator The . operator applies to functions, and

returns the composition of two functions as a single one: (£ . g) x = £ (g
x).

() :: (b ->¢c) -=>(a->Db) -> (a ->c)
f.g=\x->1f (gx)

Composition is associative: £ . (g . h) = (£ . g . h
Compositions allow to think in terms of functions and abstract out values.
An example to express the composition of a list of functions:

compose :: [a -> a] -> (a -> a)
compose = foldr (.) id

Non-Binding Function Application: the "$" operator The $ operator
is another way, besides the usual function application (denoted by a space) , of
applying arguments to a function.

This is the operator of least precedence. It has been introduced in order to
further avoid the use of parentheses:

a$bopc = a (bopc)

When a $ is encountered, the expression on its right is applied as the argu-
ment to the function on its left, as if a virtual parenthesis was opened there,
and a closing one added at the end of the expression.

This operator is right-associative: £ $ g $ h = (£ $ (g $ h)).

So this operator is the "opposite" of the base function application in terms
of precedence and associativity - but otherwise is the same in terms of definition
(including typing):

($) :: (@ ->b) ->a ->b
f$x=1Ffx
Function
An association from a set of arguments to a set of corresponding results.

double x = 2*x
=> [a] -> a

0
n + sum ns

sum :: Num
sum []
sum (n:ns)

o))

A function may not be defined for all (well-typed) combinations of its argu-
ments.

For example head [] is to throw an exception.

A function is a value like the other datatypes (first-class citizen).

Thanks to the algebraic datatypes such as lists and tuples, a function may
take and return an arbitrary number of values (thus including functions).

A function may be only partially applied: its last argument(s) may not
specified in a given call. Then the value of the overall expression is a function
of these remaining, unspecified arguments.

For example, if f :: (Int,Float) -> Boolthenf 3 :: Float -> Bool.
By default functions are polymorphic, insofar as they will accept all types
determined as compatible. For example zip :: [a] -> [b] -> [(a,b)] can

handle any types for a and b.

Functions are defined from expressions and based on pattern matching,
which operates on few possible patterns that are examined in turn, from top to
bottom:

e function application, like in:

(&&) :: Bool -> Bool -> Bool
True && b =D
False && _ = False

e tuple patterns, like in:

fst :: (a,b) -> a
fst (x,_) = x

e list patterns, like in:

tail :: [a] -> [a]
tail (_:xs) = xs

https://en.wikipedia.org/wiki/Algebraic_data_type

The ¢’ character acts as a "wildcard" (it matches any value).
Note that a non-empty list is (a bit surprisingly) to be pattern-matched with
(x:xs) and not [x:xs]. For example:

product :: Num a => [a] -> a
product [] =1
product (n:ns) = n * product ns

The same name cannot be specified for two arguments to match when they
are equal; a guard must be used for that. Finally pattern matching can operate
on few possible patterns: function application, tuple and list ones, that’s it.

Guards

Functions can be defined using guarded equations, to select which clause applies
based on the first one from the top to evaluate to True. As Haskell can guarantee
that these functions are pure, guards can be user-defined (rather than be taken
in a limited selection of built-in guards).

For example:

abs | n>= 0
| otherwise

n

-n

Guards are also logical expressions to filter the values produced by earlier
generators.
For example:

primes :: Int -> [Int]
primes n = [x | x <- [2..n], prime x]

Currying

A function taking its arguments one by one (one at a time, from left to right),
each time returning a function of a decremented arity, is said to be curried.
Such 1-arity functions are those directly modelled by the lambda calculus,
an essential base of the functional languages.
As the function arrow operator (->) is right associative, the type of functions
is preferably written as:

f :: TArgl -> TArg2 -> ... -> TArgn -> TResult
This corresponds to the following actual type:
f :: TArgl -> (TArg2 -> (... -> (TArgn -> TResult))...)

Consequently, as their arguments are to be applied one by one from left to
right, the “ “ operator (function application is represented by the space charac-
ter) is right-associative:

fala2 ... an = (((f al) a2) ... an)

Functions can thus all be seen as curried ones, and can also be directly
transposed as lambda ones; for example the following definitions define the
same function:

add :: Int -> Int -> Int
add x y =x +y

add :: Int -> (Int -> Int)
add = \x -> (\y -> x + y)
In this latter form:

e the type specification and the definition of the function respect the same
structure: XXX -> (XXX -> XXX)

e the function is designated (on the left of the = sign) without listing its
arguments (we have add =, not add x y =)3

e if the purpose of the function is to return another one, its intent is clearer
once expressed as a lamdba function

Side Effects

They correspond to all the consequences that the evaluation of a code (program,
function) incurs besides its returned value.
Example:

e writing content on file, or on the screen

e reading from file or from the input devices (keyboard, mouse)

e changing the state of a value accessible from outside of the function
e sending a message to another process or through the network

e drawing a random value

These impure events are difficult to manage yet are generally necessary, as
the purpose of a program is to trigger "interesting side-effects"; a strictly pure
program would most probably have no actual use (except using time, processing
resources and adding the possibility of failure).

Typing
Notion of Type

A type is a set of associated values.

e :: T means that expression e is of type T.

Haskell infers types at compilation (static typing), which prevents to discover
many problems? at runtime.

Some expressions that could be successfully evaluated can nevertheless be
rejected on type grounds (ex: if True then 1 else False), but in practice it
is hardly a problem.

3This is certainly clearer yet, if no type specification is given, the arity of the function is
only implicit then.

40f course other problems may occur; for example 1 ¢div¢ 0 is well-typed yet its execution
will fail.

Type Alias

Ex: type Pos = (Int,Int)

This does not introduce a new type; these are synonyms for Haskell.

Type declarations can have any number of parameters and be parametrised
by other types, like in type Assoc k v = [(k,v)].

Data Declarations

This introduces a new type; ex: data Bool = False | True.

| shall be read "or", and the values specified for the new type are called
constructors. They start with an uppercase letter and a given constructor may
not be used in more than one type.

Constructors may have arguments, in which case they are constructor func-
tions:

data Shape = Circle Float | Rect Float Float

Here Circle :: Float -> Shape.

Such functions have no definition equations, and Circle 1.0 is fully evalu-
ated and cannot be further simplified.

The ordering on the constructors of a type is determined by their position
in its declaration (ex: False < True; constructors with arguments are ordered
lexicographically regarding these argments.

They may also be:

e parametrised: data Maybe a = Nothing | Just a.

e recursively defined: data Nat = Zero | Succ Nat

For example all sorts of trees can be defined with it:

e binary tree with content only in leaves:
data Tree a = Leaf a | Node (Tree a) (Tree a)

e binary tree with content only in non-leaf nodes:
data Tree a = Leaf | Node (Tree a) a (Tree a)

e binary tree with different types of content in leaf and non-leaf nodes:
data Tree a b = Leaf a | Node (Tree a b) b (Tree a b)

e tree having any number of subtrees:

data Tree a = Leaf a | Node a [Tree al

Newtype Declarations

Introduces a new type provided that it has a single constructor with a single
argument.

Ex: newtype Nat = N Int.

By comparison:

e type Nat = Int would not introduce a new type

e data Nat = N Int would also introduce a new type, but would incur
runtime overhead

Why data is not automatically transformed by Haskell internally in newtype
whenever applicable is unsure (for us).

Algebraic Datatypes

They are defined based on unions of values.
For example, in:

data MyFirstType = FirstValue | SecondValue | FirstConstructor T

MyFirstType is the name of the type. FirstValue and SecondValue are
(constructor) values.

FirstConstructor is a constructor, and T is a type name (not a constructor).

Type and constructor names can be the same, as no ambiguity can occur.

Polymorphic types can be defined:

data MySecondType a = ThirdValue | SecondConstructor a Int

Basic Types
e monomorphic: Bool, Char, String :: [Char], Int/Integer, Float/Double

e polymorphic: list, tuple, function
Char Example: ‘a‘.

Tuple A tuple is a fixed-sized, possibly heterogenous container.
Example:

("I am a tuple", 2, True)
List

Description A list is an arbitrary-sized, homogeneous container.

Example:
11 = [1.0, 7.0, 2.0]
12 = []
13 = [100..]
14 =1:2:3:[]

10

List Comprehension Example:
u s = [toUpper c | ¢ <- s]

More information: [1].

Folds Like the map, the various folds encapsulate a classical recursion pat-
tern.

foldr (r for right fold) evaluates from right to left, uses a right-associative
operator and is directly recursive:

foldr :: (a ->b ->b) ->b -> [a] -> b
foldr £ v [] =v
foldr f v (x:xs) = f x (foldr f v xs)

foldl (1 for left fold) evaluates from left to right, uses a left-associative
operator and relies on an accumulator:

foldl :: (a ->b ->a) ->a -> [b] -> a
foldl f v [] =v
foldl f v (x:xs) = foldl f (f v x) Xs

String A string is nothing but a list of (Unicode) characters: String =
[Char].

Example: "Hello!" or ‘a‘:‘b¢:‘c‘: []

A string cannot spread over multiple lines directly; the backslash (\) char-
acter is needed for that:

s = "This is a unique \
\line."

(any text between the two \ is ignored)
A newline is designated in a string by \n.

Function See function.

Type Class

A type class is a set of types that support a set of functions called methods.
For example the Eq class is to gather all types that can be compared for
egality (or inegality), based on the following two methods:

(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

A type may belong to one or more classes.
Class constraints can be specified when typing a function. For example:

(+) :: Num a => a -> a -> a

The type variable a must be here an instance of class Num.

A type respecting at least one of such constraints is said overloaded, as is
the corresponding expression.

Well-known classes are: Eq, Ord, Show, Read, Num, Integral, Fractional.

11

https://wiki.haskell.org/List_comprehension

Monad

Informal Descriptions

Various intuitive descriptions of a monad apply:
e a stateful datastructure representing some processing

e an abstraction, a generic concept allowing to structure programs generi-
cally and to unify in a functional way various problems (to structure them
and favour separation of concerns)

e programmable ";" (semicolons whose effect can be defined)

e astructure allowing to express imperative traits in functional languages, to
convey notions like exceptions or side-effects while preserving their purity

e a way of describing and composing impure expressions in a pure context:
a monad is an expression still to be evaluated (potentially inducing then
side-effects), yet able to be integrated in a pure context

e the code source of an imperative program that, once executed, returns
a value of a specified type and that can be chained with other programs
taking and returning such values; the language handles then the imperative
programs themselves (ex: their source) rather than the values they return

More Formally

A monad M is a (type, return function, bind function) triplet with:
e a monadic constructor: t -> M t

e a function named return that, through the previous constructor, allows
to obtain, from a value of type a, a value of monadic type M a: return:
t ->Mt

e a function named bind that allows to compose a monadic function® with
others, represented by the >>= infix operator so that: >>= :: M t -> (
t->Mu) ->Mu

So return allows to convert a pure expression (not involving side-effects) of
type t into an action (i.e. a transformation that may be executed) M t that
is impure (with side effects) and deals with a value of type t. No opposite
operation exists (that would transform a value of type type M t into one of
type t, in the sense that side-effects cannot be rolled-back. A goal is thus
to separate the pure parts of a program from its impure ones, which shall be
minimised and isolated.

Mt >>= f (i.e. "bind Mt {") allows to apply the f function to the value of
type t encapsulated in Mt; >>= drives the chaining of monadic functions (as such
it handles functions, not values).

By composing >>= with return, any function g :: t -> t can be applied
to a monad of type M t (here the types u and t in the definition of bind are the
same).

5 . L . . .
° A monadic function is a function returning a monadic value.

12

These functions (f et g) are only aware of the value (t) encapsulated in the
monad, not the monad (M t) itself.

So the developer composes a sequence of function calls (a pipeline) by chain-
ing binds in an expression. Functions transform the values that they receive ;
then the bind operator controls the returned monadic values (ex: it can enrich
them outside of the view of these chained functions) and the next calls (ex: it
can make them conditional).

So a monad of type M t is an algebraic datatype that derives from type t.

The elements of the monadic triplet shall respect following 3 axioms, return
behaving like a neutral element from >>=:

e left composition by return, with: (return x) >>=f = f x

e right composition by return, with: m >>= return = m

e associativity of bind, with: (m >>= £) >>=g = m>=\x . (f x
>>= g)

A sequence of actions (transformations that may be executed) may be com-
bined into a single composite action thanks to the do notation.

Let’s consider types Vk for k in 1..n and R, and a function f of arity n and
type V1 -> V2 -> ... -> Vn -> R.

do vl <- ail

v2 <- a2
vn <- an
return (f vl v2 ... vn)

The <- operator in vl <- al, for vl a value of type V1, means that the action
(transformation function) a1 of type M V1 (i.e., if M is I0, of type WorldState
-> (V1,WorldState)) shall be executed, and that its result (of type V1) shall
be stored in variable v1. Then the (pure) function f can be evaluated with
these resulting vk arguments, and its returned value of type R is returned as an
action of type M R (ex: I0 Int).

As a consequence, the do notation returns a new action, i.e. a single com-
posite transformation that may be executed.

Refer to this article for more information.

In a Nutshell

A monad M defines a type that represents a processing and is associated to two
operators:

e return: to encapsulate a value of type t in this monad (resulting in a
monadic value M t)

e bind, i.e. >>=: to compose monadic functions

13

https://en.wikipedia.org/wiki/Monad_(functional_programming)

Examples

The I0 monad is probably the most well-known monad. I0 t represents an
imperative program taking no parameter and returning a value of type t.
For example:

e I0 () denotes, with the empty tuple (), a program returning no specific
value (akin to void in some languages)

e the getLine‘‘function is of type ¢‘I0 String, it returns the string
entered on the keyboard by the user

A second example is the one of Maybe, as taken from this article
The Maybe-type (so here M = Maybe) is: Maybe t :: Just t | Nothing
The Maybe-return is:

return :: t -> Maybe t
return undefined = Nothing
return 0 -> Just O

The Maybe-bind is:
(>>=) :: Maybe t -> (t -> Maybe u) -> Maybe u

Nothing “¢¢>>=¢‘¢ f = Nothing
(Maybe a) “¢>>=¢¢¢ f = Just(f a)

The Maybe monad allows to handle errors: as soon as a function call fails,
the next binds short-circuit the processing rather than letting the next functions
be evaluated in turn.

A third example is seqn, to transform a list of actions with side-effects (ex:
I0) returning a result of type a into a single of such action:

seqn :: Monad m => [m a] -> m [a]
seqn [] = return []
seqn (act:acts) = do x <- act -- *performs* this ’act’ action
xn <- seqgn acts
return (x:xs)
Properties

e any monad can be characterized as an adjunction between two (covariant)
functors

e the monad as defined in category theory has been applied to functional
programming, in order to provide semantics for the lambda calculus

Interest

e as monadic values represent explicitly not only computed values but also
the effects that these evaluations trigger, a monadic expression can be
freely replaced by its value (referential transparency), which enables the
use of various optimisation approaches based on rewriting

14

https://en.wikipedia.org/wiki/Monad_(functional_programming)#An_example:_Maybe

a monad captures, centralises and unifies once for all recurring schemes to
integrate side effects that would be otherwise more difficult to handle (ex:
with CPS, Continuation-Passing Style

monads may register additional data that are inaccessible from functions
and/or may drive their execution (ex: conditional call)

monads may favour aspect-oriented programming, in the sense that they
allow the developer to focus on his domain-specific logic (as the binding
code, provided by the monad, is defined separately - and once for all)

Usages

to condense code and to tie it to a mathematical formulation (compilation-
time version of the "decorator pattern"

to facilitate static analysis and program proofs

to support the definition of simple DSL (Domain-Specific Languages) and
to combine parsing rules

to support the traversal of datastructures (see zipper)

to transform complicated sequences of function calls into a compact pipeline
abstracting out the management of additional data, flow control and side-
effects

to rely on call-by-need

to allow for optimisations such as:

— deforestation (a.k.a. fusion or "tree suppression"): a program trans-
formation to eliminate intermediate lists or tree structures that are
created and then immediately consumed by a program

— memoisation: the caching of results of function calls in order to com-
pute them once

— parallelisation: to split a program between multiple logical processes

— strong reduction: when -reduction in the -calculus are also performed
on function bodies

See also this section about monad applications.

Lazy Evaluation

Most languages perform strict, eager evaluation: to evaluate a function call,
first each of the supplied argument is fully evaluated, then the function itself is
evaluated, based on the values jst computed for its arguments.

On the contrary, lazy evaluation strives to defer as much as possibly evalu-
ations - possibly delaying up to the point of having never to perform them.

Lazy evaluation is convenient to express higher-level programs (ex: handling
infinite lists such as [1,...]), yet makes it harder to predict the behaviour of
programs at least in terms of resource consumption (time, memory, etc.).

For an increased control, strict evaluation can nevertheless be forced.

15

https://en.wikipedia.org/wiki/Continuation-passing_style
https://en.wikipedia.org/wiki/Zipper_(data_structure)
https://en.wikipedia.org/wiki/Deforestation_(computer_science)
https://en.wikipedia.org/wiki/Memoization
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Monad_(functional_programming)#Applications

Arrows

An arrow (a.k.a. "bolt") is a type class representing computations in a pure
way; this monad generalisation allows to express the relationships between the
logical steps of a processing.

Refer to this article for more information.

Lambda Calculus

The lambda calculus is a simple yet powerful theory of functions. Its basis is
to consider that all program elements are functions. An expression may include
functions that are not yet defined and that are then considered as variables.

This is a formal system designed by Alonzo Church in the 1930s to define
the concepts of function and (function) application. It relies on -expressions,
where denotes the binding of a variable. For example, if M is a -expression, then
x.M is also one, and represents the function that to the x variable associates M
(i.e. \x -> M x here).

The -calculus has been the first formalism defining and characterising the
recursive functions, and as such is essential to the theory of computing.

It is used as theoretical programming language and also as metalanguage for
formal proof.

-calculus may or may not be typed.

Refer to this article for more information.

Minor Topics

e enumerations: ranges whose bounds (if any) are specified; any value in
the Enum class can be used; ex: [1..10], [1,3..100], [’a’ .. ’z’],
[100..]

e operator sections: if # is an operator, (#), (x #), (# y) are sections;
for example (/3) = \x -> x/3; usage: sum = foldl (+) O

e higher-order functions: such a function takes a function as an argument
and /or returns a function as a result; the support for currying in Haskell
systematises the latter, so in this context a higher function is the latter,
i.e a function with at least one argument being a function

e the I0 monad accounts for the (input-output) side effects triggered by a
program, which translate to changes done to the state of the world (outside
of the program itself); such an effectful program, which is to return a
value of type a can be represented by a WorldState -> (a,WorldState)
function; this corresponds to the definition of the I0 a type, whose values
are called actions (i.e. transformations that may be executed)

e the main function of a script is evaluated when this script is executed; main

I0 (O returns the empty tuple, to be understood as a dummy result

value; thanks to currying, no specific support for input program parameter

is needed for the I0 monad; for example an interactive program taking a

character and returning an integer could have for type Char -> I0 Int,
meaning Char -> WorldState -> (Int,WorldState)

16

https://en.wikipedia.org/wiki/Arrow_(computer_science)
https://en.wikipedia.org/wiki/Lambda_calculus

Haskell Syntax
Reserved Words

They cannot be used to name functions or variables:

case, class, data, deriving, do, else, if, import,
in, infix, infixl, infixr, instance, let, of, module,
newtype, then, type, where

Comments

A single-line comment starts with -- and extends to the end of the line.
Multi-line comments start with {- and extend to -}.
Example:

size = 3 -- This is a constant here.
{- Comments are essential for understanding.

Consider writing them.

-}

Comments can be nested.

See also the comment conventions for the Haddock documentation generator.

Literate programming (where text is by default a comment, unless being
specifically designated as code) is possible in an Haskell script, whose extension
shall then be .1hs (for Literate Haskell).

Haskell Tools

Glasgow Haskell Tools
They include a compiler (GHC) and an interpreter (GHCi).

Haddock: a Haskell Documentation Tool

Haddock generates documentation from annotated Haskell source code (typi-
cally libraries).

So that they are taken into account by Haddock, comments above function
definitions should start with {- |, and those next to parameter types with --

Example of use:

-- |The ’square’ function squares an integer.
-- It takes one argument, of type ’Int’. square :: Int -> Int
square X = X * X

{-1

17

https://wiki.haskell.org/Literate_programming
https://www.haskell.org/haddock/

The ’cube’ function cubes an integer.
It takes one argument, of type ’Int’.
-}

cube x = x * square x

data T a b
=Cl ab -- - This is the documentation for the ’Cl1l’ constructor
| C2 ab -- - This is the documentation for the ’C2’ constructor

See this page for more information regarding markup.

Haskell Conventions

Index

They start at zero:

[1,2,3,4] 't 1 =2

Whitespaces

One should avoid tabulations (i.e. prefer spaces).
Generally the least number of spaces is preferred; like in: sum $ map sqrt
[1..10].

Naming

The names of functions and arguments start with a lowercase character and
are followed by any number of: numbers, letters (of any case), underscores and
single quotes.

The names of types and constructors start with an uppercase letter.

Shortness

Most Haskell developers seem to strongly dislike typing, often resulting in cryp-
tic names for functions (ex: fst) and variable names (often reduced to a single
character whose meaning is never disclosed).

A lot of efforts went especially to save keystrokes and more precisely to re-
move as much as possible the need for parentheses (function application being
denoted as a space, the . and $ operators being introduced, etc.). This al-
lows very compact definitions of functions out of functions (ellipsing values as
such), and an increased expressivity, sometimes at the expense of clarity. Extra
documentation may alleviate this problem.

Single-letter variable names often denote their type (ex: ¢ for a Char vari-
able), and are suffixed by s to indicate this is a list thereof (ex: bs for a variable
of type [Booll, css for a [[Charl] one).

18

https://haskell-haddock.readthedocs.io/en/latest/markup.html

Layout & Indentation

Indentation matters, as spaces denote scopes:
a=b+c
where
b=1
c =2
d=a=x2

An alternative layout based on curly braces and semi-colons exists, yet its
use is discouraged.

A function body shall be indented of at least one space compared to the
function name (if indented at all).

As any where or let use must be, indentation-wise, between the name and
the body of a function, we prefer, compared to the function name:

e a 2-space indentation for the body
e a l-space indentation for where / let body
For example:

square x =

sq
where sq = x * x

Haskell Hints

e generalise: types can be generalised thanks to type classes

Haskell In Practice

Installing Haskell

On Arch Linux (see this page for more information): pacman -Sy ghc cabal-install
stack.
See also our corresponding script for continuous integration.

Running Haskell

Except for performances, programs can be tested directly with ghci, like in:
$ ghci Foobar.hs
The very essential GHCi commands are:

e :7 or :help: lists available commands

e :load FILENAME: loads specified script

19

https://wiki.archlinux.org/title/haskell
https://github.com/Olivier-Boudeville/Ceylan-Curry/blob/main/.github/workflows/curry-ci.yml
https://typeclasses.com/ghci/commands

e :reload or :r: reloads the current module, file, or project
e :: repeats the previous command

e :type or :t: returns the type of specified expression (value or function);
ex: :t not False

e set editor NAME: sets the code editor to NAME
e edit FILENAME: edits specified script

e edit: edits current script

e :quit or CTRL-D: quits the interpreter

For example:

$ ghci
GHCi, version 8.10.5: https://www.haskell.org/ghc/ :7 for help

Prelude> :type not
not :: Bool -> Bool

Functions can be directly redefined:

Prelude> fac n
Prelude> fac 5
120

product [1..n]

Prelude> fac =0
Prelude> fac 5
0

Haskell-related Filenames
Filenames

They may or may not start with a capital letter (and no specified convention

applies).
They may be in snake case or in CamelCase.
Ex: my_test.hs, HelloWorld.hs.

Extensions

The main extensions are:

e .hs: Haskell source code (to preprocess then compile)

.1lhs: literate Haskell source (to unlit, preprocess and compile), where all
text is comment by default, and code is specifically designated as such

.hi: interface file; contains information about exported symbols

.hc: intermediate C files

20

A very basic Foobar.hs source file once compiled results in a standard
Foobar.o object file, typically:

ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped

If Foobar.hs defines a suitable main function, once linked it results in a
standard Foobar.o executable, typically (depending on the build options):

ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter
In terms of shared libraries, this boils down to, for example:

linux-vdso.so.1

libHSbase-4.14.2.0-ghc8.10.5.s0 => /usr/1lib/ghc-8.10.5/base-4.14.2.0/1ibHSbase-4.14.2
libHSinteger-gmp-1.0.3.0-ghc8.10.5.s0 => /usr/lib/ghc-8.10.5/integer-gmp-1.0.3.0/1ibH
libHSghc-prim-0.6.1-ghc8.10.5.s0 => /usr/lib/ghc-8.10.5/ghc-prim-0.6.1/1ibHSghc-prim-
1ibHSrts-ghc8.10.5.s0 => /usr/1lib/ghc-8.10.5/rts/1ibHSrts-ghc8.10.5.s0

libgmp.so0.10 => /usr/lib/libgmp.so.10

libc.so0.6 => /usr/lib/libc.so.6

libm.so.6 => /usr/lib/libm.so.6

librt.so.1 => /usr/lib/librt.so.1

libdl.so0.2 => /usr/1lib/1libdl.so.2

libffi.so.7 => /usr/1lib/libffi.so.7

libpthread.so.0 => /usr/lib/libpthread.so.0

/1ib64/1d-1linux-x86-64.s0.2 => /usr/1ib64/1d-linux-x86-64.s0.2

Build System

One may rely on the Haskell transposition of our simple, usual make-based build
system (refer to the GNUmakex files; see this section of our Erlang-based Myriad
counterpart for more details).

Haskell Resources

To Learn

We would certainly recommend browsing the pleasant Learn You a Haskell for
Great Good! website or, even better, buying their book; another worthwhile
book is Programming in Haskell, whose author is Graham Hutton, that we found
interesting and well-written as well.

Of course the official Haskell website is also of interest.

Cheat Sheets

See Justin Bailey’s one.

Support

Bugs, questions, remarks, patches, requests for enhancements, etc. are to be
reported to the project interface (typically issues) or directly at the email address
mentioned at the beginning of this cookbook.

21

https://github.com/Olivier-Boudeville/Ceylan-Curry
https://myriad.esperide.org/#general-build-structure
http://learnyouahaskell.com/
http://learnyouahaskell.com/
https://www.haskell.org/
https://cheatsheet.codeslower.com/
https://github.com/Olivier-Boudeville/Ceylan-Curry
https://github.com/Olivier-Boudeville/Ceylan-Curry/issues

Please React!

If you have information more detailed or more recent than those presented in
this document, if you noticed errors, neglects or points insufficiently discussed,
drop us a line! (for that, follow the Support guidelines).

Ending Word

Have fun with Haskell and functional programming]!

22

	Table of Contents
	Overview
	Cookbook Conventions
	Concepts
	Functional Programming (FP)
	Arity
	Expressions
	Operators
	Operator Precedence
	Operator Associativity
	Operator Calls
	Some Operators of Interest
	Calling functions: the " " (pseudo-)operator
	Consing lists: the ":" operator
	Function Arrow: the "->" operator
	Composition: the "." operator
	Non-Binding Function Application: the "$" operator

	Function
	Guards
	Currying
	Side Effects
	Typing
	Notion of Type
	Type Alias
	Data Declarations
	Newtype Declarations
	Algebraic Datatypes
	Basic Types
	Char
	Tuple
	List
	String
	Function

	Type Class

	Monad
	Informal Descriptions
	More Formally
	In a Nutshell
	Examples
	Properties
	Interest
	Usages

	Lazy Evaluation
	Arrows
	Lambda Calculus
	Minor Topics

	Haskell Syntax
	Reserved Words
	Comments

	Haskell Tools
	Glasgow Haskell Tools
	Haddock: a Haskell Documentation Tool

	Haskell Conventions
	Index
	Whitespaces
	Naming
	Shortness
	Layout & Indentation

	Haskell Hints
	Haskell In Practice
	Installing Haskell
	Running Haskell
	Haskell-related Filenames
	Filenames
	Extensions

	Build System

	Haskell Resources
	To Learn
	Cheat Sheets

	Support
	Please React!
	Ending Word

